Astrophysics

Lumped-Element Kinetic Inductance Detectors for Cosmic Microwave Background Polarimetry

Completed Technology Project (2016 - 2017)

Project Introduction

NASA's Science Mission Directorate (SMD) calls out understanding how the universe began as a major goal. The Cosmic Microwave Background (CMB) is a nearly isotropic radiation that fills the universe and contains unique cosmological information. The CMB contains polarization anisotropies and a measurement of the primordial B-mode polarization signal from inflationary gravitational waves could uniquely confirm the theory of inflation. In order to make this measurement, thousands of detectors with photon-noise limited sensitivity are needed. The NESSF fellowship has enabled me to work on the development of Lumped Element Kinetic Inductance Detectors (LEKIDs) for measuring CMB anisotropies. Specifically, I am conducting research for dualpolarization LEKIDs that are sensitive to spectral bands in the millimeter wavelengths where the CMB spectrum peaks. In the first year of the NESSF fellowship, I accomplished all stated goals, most importantly to demonstrate sensitive dual-polarization LEKIDs with low noise. We have been invited to deploy the dual-polarization LEKIDs at the Keck Array, a B-mode polarization experiment, for an on-sky test in the coming year. I will be part of the team to integrate and deploy the detectors and to analyze the experimental data. Additionally, as part of a collaboration, I have begun work towards developing multichroic KIDs, meaning the detectors are simultaneously sensitive to multiple spectral bands, that could be used in future CMB missions. In this progress report, I give a summary of work accomplished and present the research plan for 2016-2017. This research works to fulfill the NASA objectives of 1. Developing technological advances for future missions and 2. Measuring or a setting an upper limit on the primordial B-mode polarization signal.

Primary U.S. Work Locations and Key Partners

Lumped-Element Kinetic Inductance Detectors for Cosmic Microwave Background Polarimetry

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	1
Project Management	2
Technology Areas	2
Target Destination	2

Organizational Responsibility

Responsible Mission Directorate:

Science Mission Directorate (SMD)

Responsible Program:

Astrophysics

Astrophysics

Lumped-Element Kinetic Inductance Detectors for Cosmic Microwave Background Polarimetry

Completed Technology Project (2016 - 2017)

Organizations Performing Work	Role	Туре	Location
The Trustees of Columbia University in the City of New York	Supporting Organization	Industry	New York, New York

Primary	, II S	Work	Locations	
rilliaiv	<i>,</i> U.J	. WULK	LUCALIUIIS	ı

New York

Project Management

Program Manager:

Joe Hill-kittle

Principal Investigator:

Bradley R Johnson

Co-Investigators:

Heather Horgan Heather L Mccarrick

Technology Areas

Primary:

- TX08 Sensors and Instruments
 - ☐ TX08.1 Remote Sensing Instruments/Sensors
 - ☐ TX08.1.1 Detectors and Focal Planes

Target Destination

Outside the Solar System

